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Abstract. Genome organization in prokaryotes has 
been well-studied, and gene location alone can 
often be used to infer functional relationships. We 
combine high-quality operon predictions with 
comparative genomics to identify likely sets of co-
regulated genes. We use this a priori biological 
knowledge to improve traditional gene expression 
profile clustering techniques.
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Method. 1) Positional Clustering

Gene Neighbor Method—assume gene 
clusters from phylogenetically distant 

organisms imply co-regulation (Overbeek 
et. al. 1999)

• Conserved gene clusters in prokaryotes 
are often composed of functionally related 
genes

• More genomes = higher confidence 
(currently 165 genomes in VIMSS 
database)

• The further the phylogenetic distance 
between 2 organisms, the less likely a 
cluster is due to chance
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2) Regulon-regulon Coexpression:
Clustering Algorithm
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Background.  The most direct way to control 
the expression of a gene is to regulate its rate 
of transcription. For functionally-coupled genes 
whose expression needs to be coordinated, 
this transcriptional control is often 
accomplished by placing them on the same 
polycistronic mRNA, or operon.
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Clustering gene expression profiles. 
Clustering gene expression data is one of the 
most common approaches to identifying 
functionally related genes. However, this method 
can be improved upon if a priori relationships 
among a group of genes are known.  For genes 
co-transcribed in operons, high-quality operon
predictions can be used to elucidate co-
expression relationships.  Then, these often noisy 
expression profiles can be averaged over all the 
genes in each operon, maximizing the signal-to-
noise ratio. Such is the case with operons. 
Knowledge can be further extended by examining 
pairs of genes across all genomes to include 
operons which may have been broken up during 
evolution. 
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Building regulons from operons. Operons that appear near 
each other frequently enough in disparate genomes get 
combined into regulons: all pairwise GNM scores are computed, 
then averaged over operons to give operon-operon distances. 
These distances are then used cluster operons into regulons by 
using complete linkage hierarchical clustering.  Thus, an operon 
is merged into a regulon cluster if it has at least one gene that is 
a “gene neighbor” with each of the other operons in the cluster .
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Disrupted Operons Maintain Similar Promoters. Genes 
found within position-based regulons show a high 
expression correlation, even with the operon relationships 
removed. Strikingly, the distribution is statistically 
indistinguishable from genes known to share a transcription 
factor*. (Kolgomorov-Smirnov Test, p-value = 0.34, D = 
0.0641, where D=0 for identical distributions and D=1 is for 
non-overlapping distributions).

*DPInteract: http://arep.med.harvard.edu/dpinteract/
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Results.  Clustering of both operons and regulons 
consistently outperformed traditional gene-based methods 
as measured by mutual information of gene function and 
cluster. Further, regulons were able to improve 
performance even at low cluster numbers, and 
outperformed clustering of regulons with randomized 
expression profiles.  Taken together, these results suggest 
that pre-grouping genes into regulons improved the ability 
of the clustering algorithms to utilize the microarray data.

All clustering was done using the K-means algorithm, with 
the exception of average linkage hierarchical clustering, as 
indicated above. While in common use, this type of 
hierarchical clustering often gives worse-than-random 
results (Gibbons et. al. 2002).  Curves above are the result 
of averaging 10 independent runs of the K-means clustering 
algorithm with different random seeds.

“Zooming in” on regulon clusters illuminates biologically 
relevant interactions, and often lends insight into potential 
relationships with as yet uncharacterized genes as shown 
in the examples below. 
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Evaluating Clustering Results.  We use mutual 
information of gene functions and clusters to 
measure effectiveness.  Higher mutual 
information (MI) indicates a more homogeneous 
set of functions within the cluster.  The COG 
functional categories are used to assess gene 
function.  Because the scale of MI can be 
somewhat arbitrary, we compare observed MI to 
that for randomly generated clusters (of uniform 
size) with the same gene set, and compute a Z-
score indicating functional enrichment above 
random.

Z-score = (Miobs-<Mirandom>)/σ(Mirandom)
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